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The eigen value approach, following the Laplace and Hankel transformation has been employed to find a 
general solution of the field equations in a generalized thermo microstretch elastic medium for an axisymmetric 
problem. An infinite space with the mechanical source has been applied to illustrate the utility of the approach. 
The integral transformations have been inverted by using a numerical inversion technique to obtain normal 
displacement, normal force stress, couple stress and microstress in the physical domain. Numerical results are 
shown graphically. 
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1. Introduction 
 
 The classical theory of elasticity successfully explains the behavior of construction materials 
(various sorts of steel, aluminum, concrete) provided the stresses do not exceed the elastic limit and no stress 
concentration occurs. But it is inadequate to model the modern engineering components which possess 
internal structure such as polycrystalline materials and materials with fibrous or coarse grain structure. 
Eringen (1966) coined a term micropolar elasticity and used this theory to explain the deformation of elastic 
media with such oriented particles. A micropolar continuum is a collection of interconnected particles that 
are made up of dipole atoms or dumb-bell molecules and are subjected to surface and body couples which is 
capable of translational as well as rotational motion. 
 The governing equations of thermoelasticity in the usual framework of linear coupled 
thermoelasticity consists of the wave type (hyperbolic) equations of motion and the diffusion type 
(parabolic) equation of heat conduction. But it was observed that if an isotropic, homogeneous, elastic 
material is subjected to thermal or mechanical disturbances, the effects in the temperature and displacement 
field are felt immediately at an infinite distance from the source of disturbance. This implies that a part of the 
disturbance has an infinite velocity of propagation which is physically impossible. To overcome these 
discrepancies two generalizations to the coupled theory were introduced. The first is due to Lord and 
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Shulman (1967), who obtained a wave-type heat equation by postulating a new law of heat conduction to 
replace the classical Fourier’s law. The second generalization is known as the theory of thermoelasticity with 
two relaxation times or the theory of temperature–rate-dependent thermoelasticity. Green and Lindsay 
obtained an explicit version of the constitutive equations in 1972.  
 Nowacki (1966) and Eringen (1970) extended the linear theory of micropolar continua to include the 
thermal effect and formulated the micropolar thermoelasticity theory. The linear theory of elastic materials 
with stretch is one of the generalizations of the classical theory of elasticity. Eringen (1971) developed the 
theory of micropolar elastic solid with stretch which included the effect of axial stretch during the rotation of 
molecules. Microstretch solids are capable of stretching and contraction independent of their translation and 
rotation. Thus, in these solids, the motion is characterized by seven degrees of freedom, namely three for 
translation, three for rotation and one for stretch. Porous media whose pores are filled with gas inviscid 
liquid, asphalt and composite fibrous materials are some examples of microstretch elastic solids. Eringen 
(1990) also developed a continuum theory of thermo-microstretch elastic solids. Green and Naghdi (1993) 
proposed the theory of thermoelasticity without energy dissipation and presented the derivation of a 
complete set of governing equations of the linearized version of the theory for homogeneous and isotropic 
materials in terms of displacement and temperature fields and proved the uniqueness of the solution of the 
corresponding initial mixed boundary value problem. Iesan and Neppa (1995) contributed to this field by 
studying a problem on extension and bending of a microstretch elastic circular cylinder. A problem of 
bending of microstretch elastic plates was investigated by Ciarletta (1999). Chandrasekharaiah and Srinath 
(2000) studied the problem of thermoelastic waves without energy disspation in an unbounded body having a 
spherical cavity. Aouadi (2008) studied the linear theory of microstretch thermoelastic bodies with 
microtemperature and proved the existence of coupling of microrotation vector field with the 
microtemperatures for isotropic bodies. Kumar and Partap (2009) investigated the propagation of 
axisymmetric free vibrations in  microstretch thermoelastic homogeneous isotropic solids which were 
subjected to stress free thermally insulated and isothermal conditions. Othman and Lotfy (2010) applied the 
normal mode analysis on the general model of the equations of generalized thermo-microstretch for a 
homogeneous isotropic elastic half space of different theories. Othman et al. (2013) analyzed the effect of 
gravity on the same model for generalized thermo-microstretch for a homogenous isotropic elastic half-space 
solid subjected to a Mode-I crack problem in the context of Green Naghdi theory. 
 
2. Formulation and solution of the problem 
 
 We consider a homogeneous, isotropic generalized thermo-microstretch elastic medium of infinite 
extent pointing vertically into the medium. Field equations and the constitutive relations without body forces, 
body couples, heat sources and stretch force are given by Eringen (1990), Lord and Shulman (1967) and 
Green and Lindsay (1972) as 
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 Since we are considering a two-dimensional axisymmetric problem, so we assume the components 
of the displacement vector u  and microrotation vector   are of the form 
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these considerations and using Eqs (2.8), the system of Eqs (2.1) to (2.7) reduces to  
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 After suppressing the primes for convenience Eqs (2.9)-(2.13) reduce to 
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 Applying the Laplace and Hankel transforms on Eqs (2.15)-(2.19) defined by 
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 The system of Eqs (2.22)-(2.26) can be written as 
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where O is the null matrix, I is the unit matrix of order 4, []t  is the transpose of matrix [] and 
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 To solve Eq.(2.27), we take 
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for some parameter q so that 
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which leads to the eigen value problem. The characteristic equation corresponding to the matrix A is given 
by 
 
   det .A qI 0    (2.30) 



Interaction due to mechanical source in generalized … 353 

 
 On expanding Eq.(2.30), we get 
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where i s  (i=1,2,..,5) are functions of  and p . 

 The eigen values of the matrix A are characteristic roots of Eq.(2.31). The eigen vectors  ,X p  

corresponding to the eigen value sq  can be determined by solving the system of homogenous equations 
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 Thus the solution of Eq.(2.27) as given by Sharma and Chand (1992) is 
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where iB s  (i=1,2,…,10) are arbitrary constants. Equation (2.34) represents the solution of the generalized 
thermo microstretch elastic medium for the axisymmetric case and gives displacement, microrotation, 
temperature distribution and scalar microstretch in the transformed domain. 
 
3. Application  
 
 We consider an infinite generalized thermo microstretch elastic space in which a concentrated force 

is 
( ) ( )
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F F
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 where 0F  is the magnitude of the force, acting in the direction of the z-axis at the origin 

of the cylindrical polar co-ordinate system as shown in the Fig.1. 
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Fig.1. Geometry of the problem. 
 
 The boundary conditions for the plane z=0 are given by, 
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the non-dimensional form with primes. After suppressing the primes and applying the Laplace and Hankel 
transforms defined by Eqs (2.20) and (2.21) on the resulting equations and using boundary conditions Eqs 
(3.1)-(3.5), we get the transformed components of displacement, microrotation, scalar microstretch, 
temperature distribution, tangential force stress, normal force stress, tangential couple stress and microstress 
for z>0, given by  
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 Making use of the transformed displacement, microrotation, temperature distribution, scalar 
microstretch and stress components given by Eqs (3.6)-(3.14) in region z>0 and equations for the region z<0 
in the boundary conditions, we obtain ten linear relations between iB s  (i=1,2,..,10) which on solving give  
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 Thus functions , , , , ,r z zr zzu u T t t     , *,zm    and z  have been determined in the transform domain 
and these enable us to find the displacements, microrotation, temperature distribution field, stresses, scalar 
microstretch and microstress. 
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4. Method for the inversion of transforms 
 
 The transformed solutions are functions of the form ( , , )f z p  and to get the function ( , , ),f r z p  
first we invert the Hankel transform by using 
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0

f z p f z p J r d


           (4.1) 

 
 The expression Eq.(4.1) gives us the Laplace transform ( , , )f z p  of the function ( , , )f z p . Now 

for the fixed values of r and z the function ( , , )f z p  can be considered as the Laplace transform ( )g p  of 

some function ( )g t . Following Honig and Hirdes (1984), the Laplace transformed function ( )g p can be 
inverted numerically as given below. 
 The function g(t) can be obtained from ( )g p  by using the inversion formula 
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where C is an arbitrary real number greater than all the real parts of the singularities of ( )g p . The actual 

procedure to invert the Laplace transform consists of Eq.(4.2) together with the  -algorithm. The values of 
C and L are chosen according to the criteria outlined by Honig and Hirdes (1984). 
 The last step is to calculate the integral in Eq.(4.1). The method for evaluating this integral is 
described by Press et al. (1986), which involves the use of Romberg’s integration with an adaptive step size. 
It also uses the results from successive refinements of the extended trapezoidal rule followed by 
extrapolation of the results to the limit when the step size tends to zero. 
 
5. Numerical results and discussion 
 
        Following Eringen (1984), we take the following values of relevant parameters for a magnesium crystal as 
 

  . 10 29 4 10 N m   ,           10 24 10 N m   ,             10 2K 1 10 N m  , 
 

  . ,3 31 74 10 kg m                  . 90 779 10 N   ,              .  ,19 2j 0 2 10 m   
 

* . ,19 2K 1 1753 10 m  * . sec1 20 0787 10 N m   ,          0 =6.131 × 10-13s,  
 

  1 =8.765 × 10-13s,            .0 073  ,            0T =296K,             . 10 2
0 0 5 10 N m   , 

 

  . 10 2
1 0 5 10 N m   ,            . 9

0 0 779 10 N   ,               * .  1 1C 3 525J Kg K  . 
 

The variations of the non-dimensional normal displacement  z z 0U 4 u F  , non-dimensional 

normal stress  zz zz 0T 4 t F  , non-dimensional tangential couple stress  z z 0M 4 m F   , non-
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dimensional microstress  *
z z 04 F    and non-dimensional temperature distribution  *

0T 4 T F   with 

the non-dimensional radial distance ‘r’ at the plane z=1, h=10-10 m and the coupling coefficient .0 073   
have been shown in Figs 2-6 for (a) generalized thermo microstretch elastic (GTMSE) medium (b) 
generalized thermo micropolar  elastic (GTME) medium; (c) generalized thermoelastic (GTE) for time t=0.1, 
0.125 and 0.5.  

The behaviour of displacement for both theories (L-S and G-L) in all three media (GTMSE, GTMS, 
GTE) is similar, whereas due to the stretch effect, the value of normal displacement in the GTMSE medium 
is slightly different as compared to those in the GTME medium for L-S and G-L theories as shown in Fig.2. 

 

 
 

Fig.2. Variations of normal displacement  .z z 0U 4 u F   

 
 The value of normal stress in the GTMSE medium is smaller as compared to those in GTME in the 
ranges 0<r<1.8 and 2.8<r<4.6 but it is larger in the ranges 1.8<r<2.8 and 4.6<r<6. The value of normal 
stress in the GTE is very small as compared to those in the GTMSE and GTME medium in the ranges 
0<r<1.5 and 3.6<r<4.8, whereas the reverse happens in other ranges. The distribution of normal stress for 
both the theories in all the three media has been shown in Fig.3. 
 The stretch effect on tangential couple stress can be observed in Fig.4, where the value of the 
tangential couple stress in the GTMSE medium is large in the ranges 0<r<1.5 and 4<r<5.5; small in the 
ranges 1.5<r<4 and 5.5<r<6 as compared to those in the GTME medium for both the theories.  
 The behaviour of microstress in the GTMSE medium is similar for both theories, as shown in Fig.5, 
whereas the value for the G-L theory is large in comparison with those of the L-S theory in the ranges 
0<r<1.75 and 3<r<5, but is small in the range 1.75<r<3, while the values are same for both the theories for 
r>5. 
 The value of the temperature field is large in the GTMSE medium as compared to those in the 
GTME and GTE media for both theories as depicted in Fig.6, where the value of the temperature field in the 
GTME medium are multiplied by 102 and 103 for L-S and G-L theories, respectively and in the GTE medium 
by 102 for both the theories, to show the behavior simultaneously. 
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Fig.3. Variations of normal stress .zz zz 0T 4 t F   
 
 

 
 

Fig.4. Variations of tangential couple stress  .z z 0M 4 m F    

 



Interaction due to mechanical source in generalized … 361 

 
 
 

 
 

Fig.5. Variations of microstress  .z z 04 F    

 
 

 
 

Fig.6. Variations of temperature distribution  .0T 4 T F    
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6. Conclusion 
 
 Hence we conclude that the effect of microstretch on displacement, normal stress, tangential couple 
stress, microstress and temperature distribution depends upon the radial distance r. Also, for a mechanical 
source this effect is inversely proportional to the radial distance. Using these results, it is possible to 
investigate the disturbance caused by a more general source for practical applications. 
 
Nomenclature 
 
 *C   – specific heat at constant strain 
 j  – micro-inertia 

 *K   – coefficient of thermal conductivity 
 mij  – couple stress tensor 
 T  – temperature change 
 tij  – force stress tensor 
 u   – displacement vector 
 ,   1    – mechanical and thermal constant  

 , , ,K  – micropolar material constants 
 

1t
 ,

2t
   – coefficient of linear expansion 

    – gradient operator 
 ij   – Kronecker delta 

 ijr  – alternating tensor 
 ,   – Lame’s constants 
 z   – microstress component 

    – density 
 0   – thermal relaxation time 

 1   – thermal relaxation time 

    – microrotation vector 

 *   – scalar microstretch  
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